
European Journal of Operational Research 203 (2010) 241–250
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.

A memetic algorithm for graph coloring

Zhipeng Lü *, Jin-Kao Hao
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 February 2009
Accepted 17 July 2009
Available online 29 July 2009

Keywords:
Graph coloring
Memetic algorithm
Crossover operator
Pool updating
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.07.016

* Corresponding author. Tel.: +33 2 41 73 52 94.
E-mail addresses: zhipeng.lui@gmail.com, lu@info

info.univ-angers.fr (J.-K. Hao).
Given an undirected graph G ¼ ðV ; EÞwith a set V of vertices and a set E of edges, the graph coloring prob-
lem consists of partitioning all vertices into k independent sets and the number of used colors k is min-
imized. This paper presents a memetic algorithm (denoted by MACOL) for solving the problem of graph
coloring. The proposed MACOL algorithm integrates several distinguished features such as an adaptive
multi-parent crossover (AMPaX) operator and a distance-and-quality based replacement criterion for
pool updating. The proposed algorithm is evaluated on the DIMACS challenge benchmarks and computa-
tional results show that the proposed MACOL algorithm achieves highly competitive results, compared
with 11 state-of-the-art algorithms. The influence of some ingredients of MACOL on its performance is
also analyzed.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Given an undirected graph G ¼ ðV ; EÞwith a set V of vertices and
a set E of edges, a legal k-coloring of G corresponds to a partition of
V into k independent sets where an independent set is a subset of
non-adjacent vertices of G. Graph coloring aims at finding the
smallest k for a given graph G (its chromatic number vðGÞ) such that
G has a legal k-coloring.

Besides its theoretical significance as a canonical NP-Hard prob-
lem [19], graph coloring arises naturally in a variety of real-world
applications, such as register allocation [7], timetabling [4], fre-
quency assignment [37], crew scheduling [17], printed circuit test-
ing [18], satellite range scheduling [38] as well as manufacturing
[20]. Due to its NP-Hardness, heuristics and metaheuristics are pre-
ferred to handle large and hard coloring problems. We briefly re-
view below some of the most representative algorithms.

The first heuristic approaches to solving the graph coloring
problem were based on greedy construction, which color the verti-
ces of the graph one by one guided by a predefined greedy func-
tion. These algorithms are very fast by nature but their quality is
generally unsatisfactory. The best known algorithms in this class
are the largest saturation degree heuristic (DSATUR) [3] and the
recursive largest first heuristic (RLF) [28]. In recent decades, these
greedy constructive heuristics are often used to generate initial
solutions for advanced metaheuristic algorithms.

On the other hand, local search based metaheuristic algorithms
have been widely used to tackle the graph coloring problem in
ll rights reserved.

.univ-angers.fr (Z. Lü), hao@
recent decades. One representative example is the so-called Tabu-
col algorithm which is the first application of Tabu Search to graph
coloring [23]. Tabucol has been latter improved by several
researchers and used as subcomponent of more elaborate coloring
algorithms (see for examples [8,11,14]). Other local search meta-
heuristic methods include Simulated Annealing [5,25], Iterated Lo-
cal Search [6], Reactive Partial Tabu Search [2], GRASP [27],
Variable Neighborhood Search [1], Variable Space Search [24] and
Clustering-Guided Tabu Search [35]. Interested readers are referred
to [15] for a comprehensive survey of the local search approaches
for graph coloring presented in recent years.

In parallel, researchers have also proposed other different ap-
proaches for solving the graph coloring problem, especially for tack-
ling some large random graphs. One of the most recent and very
promising approaches is based upon hybridization that embeds a lo-
cal search algorithm into the framework of an evolutionary algo-
rithm in order to achieve a better tradeoff between intensification
and diversification (see for examples [9,14,16,29,34]).

Another approach for dealing with large graphs is to first extract
several large independent sets and then solve the residual graph.
This approach is particularly useful for very large graphs (see for
example [12]) and can be employed as a pre-processing step for
other search algorithms.

This paper presents MACOL, a hybrid metaheuristic algorithm
integrating a tabu search procedure with an evolutionary algo-
rithm for solving the graph coloring problem. In this algorithm,
we highlight the importance of the diversity of individuals and
the balance between intensification and diversification. To achieve
this goal, we devise an adaptive multi-parent crossover operator,
which is an extension of the greedy partition crossover (GPX)
presented in [14]. Furthermore, we highlight the diversity of the
population by defining a new replacement criterion for the

http://dx.doi.org/10.1016/j.ejor.2009.07.016
mailto:zhipeng.lui@gmail.com
mailto:lu@info.univ-angers.fr
mailto:hao@ info.univ-angers.fr
mailto:hao@ info.univ-angers.fr
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

242 Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250
population updating. This replacement criterion takes into account
both the quality and the diversity among individuals.

Experiments are presented on the set of DIMACS challenge
benchmark graphs, showing the proposed algorithm achieves very
competitive results matching many and improving some previous
best solutions. Furthermore, we carefully analyze the influence of
some critical components of the proposed hybrid algorithm, show-
ing the essential factors of the proposed algorithm and shedding
light on the possible ways to further improve its performance.

The rest of this paper is organized as follows. Section 2 de-
scribes the general framework and each main component of the
proposed MACOL algorithm. In Section 3 computational results
are presented and compared with 11 state-of-the-art algorithms
in the literature. Section 4 investigates several essential parts of
the proposed memetic algorithm, followed by some conclusions.

2. Memetic algorithm

The graph coloring problem can be solved from the point view
of constraint satisfaction by solving a series of k-coloring problems
[15]. We start from an initial number of k colors ðk 6 jV jÞ and solve
the k-coloring problem. As soon as the k-coloring problem is
solved, we decrease k by setting k to k� 1 and solve again the k-
coloring problem. This process is repeated until no legal k-coloring
can be found. Therefore, we will only consider the k-coloring prob-
lem in the rest of the paper, i.e., our MACOL algorithm aims to find
a legal k-coloring from an initially conflicting (or illegal) k-coloring.
It should be clear that a smaller k for a given graph leads to a hard-
er k-coloring problem. The solution approach just described solves
thus a series of k-coloring problems of increasing difficulty.

2.1. Main scheme

Generally speaking, our MACOL algorithm can be considered as
a memetic algorithm [31], which combines a genetic algorithm
with a tabu search procedure. It is composed of four main compo-
nents: initial population generator, tabu search procedure, multi-
parent crossover operator and population updating rule. From an
initial population of illegal k-coloring individuals, tabu search is
used to improve each individual of the population by reducing col-
or conflicts of adjacent vertices. The crossover operator is then
used to generate new k-colorings which are also further optimized
by tabu search. The population updating rule decides whether such
a new offspring k-coloring should be inserted into the population
and if yes, which existing individual is replaced. The general algo-
rithm architecture is described in Algorithm 1. In the following
subsections, the four components of our memetic algorithm are
described in details.

Algorithm 1. Pseudo-code of the Memetic Algorithm for
k-Coloring
1:
 Input: Graph G, number of colors k, population size p

2:
 Output: The best k-coloring S� found so far

3:
 P ¼ fS1; . . . ; Spg Initial_Population() /� Section 2.3 �/

4:
 for i ¼ f1; . . . ; pg do

5:
 Si Tabu_SearchðSiÞ /� Section 2.4 �/

6:
 end for

7:
 S� ¼ arg minff ðSiÞ; i ¼ 1; . . . ; pg

8:
 repeat

9:
 Randomly choose m individuals fSi1; . . . ; Simg from

Pð2 6 m 6 pÞ

10:
 S0 Adaptive_Multi-Parent_Crossover

ðSi1; . . . ; SimÞ /� Section 2.5 �/

11:
 S0 Tabu_SearchðS0Þ /� Section 2.4 �/
12:
 if f ðS0Þ < f ðS�Þ then

13:
 S� ¼ S0
14:
 end if

15:
 fS1; . . . ; Spg Pool_UpdatingðS0; S1; . . . ; SpÞ

/� Section 2.6 �/

16:
 until Stop condition met
2.2. Search space and evaluation function

When designing a search algorithm for solving a specific prob-
lem, one has to define the search space. For the graph coloring
problem, the authors of [15] identify four different strategies for
defining the search space: legal strategy, penalty strategy, k-fixed
partial legal strategy and k-fixed penalty strategy.

In this paper, we adapt the k-fixed penalty strategy which is also
used by many coloring algorithms. For a given graph G ¼ ðV ; EÞ, the
number k of colors is fixed and the search space contains all possi-
ble (legal and illegal) k-colorings. A k-coloring will be represented
by S ¼ fV1; . . . ;Vkg such that Vi is the set of vertices receiving color
i. Thus, if for all fu;vg 2 E, u 2 Vi and v 2 Vj, i – j, then S is a legal k-
coloring. Otherwise, S is an illegal (or conflicting) k-coloring. The
optimization objective is then to minimize the number of conflict-
ing edges (referred to conflict number hereafter) and find a legal k-
coloring in the search space.

Given a k-coloring S ¼ fV1; . . . ;Vkg, the evaluation function f
counts the conflict number induced by S such that

f ðSÞ ¼
X
fu;vg2E

duv ; ð1Þ

where

duv ¼
1; if u 2 Vi; v 2 Vj and i ¼ j;

0; otherwise:

�
ð2Þ

Accordingly, a coloring S with f ðSÞ ¼ 0 corresponds to a legal k-
coloring.

Relevant examples of using other search space strategies such
as legal strategy, penalty strategy, k-fixed partial legal strategy can
be found in [2,25,29,30].

2.3. Initial population

The individuals of initial population are generated with a ran-
domized version of the DANGER coloring heuristic proposed in
[21]. In the original DANGER heuristic, the choice of the next vertex
to be colored is based upon a measure called ‘‘dynamic vertex dan-
gers measure” (see [21] for more details). The color assignment
uses another heuristic measure; the chosen vertex is assigned
the color that is least likely to be required by neighboring vertices.
In our implementation, the choices of the next vertex and its color
are made in a probabilistic way according to the above heuristic
measures. Thus a vertex (or color) with a higher score will have
more chances to be selected.

Moreover, we take advantage of the initialization step to build a
diversified population. For each new k-coloring, we observe its dis-
tance to the previous generated ones. If the new k-coloring is too
close to one of the previous ones, then it is discarded and another
new k-coloring is generated. The concept of the individual distance
will be discussed in details in Section 2.6.

Let us mention that we also used at the beginning of this study a
pure random method to generate the initial k-colorings of the pop-
ulation. We did not observe real difference for the final coloring re-
sults. Nevertheless, since the quality of the solutions generated

Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250 243
using the above heuristic procedure is better than using the pure
random procedure, this helps the memetic algorithm to save some
computational efforts during the first generations of its search. No-
tice also that other popular greedy heuristics are often employed to
generate initial solutions, including largest saturation degree heu-
ristic (DSATUR) [3] and the recursive largest first (RLF) heuristic
[28].

2.4. Tabu Search algorithm

In this paper, we employ a simple Tabu Search algorithm as our
local search procedure. A neighborhood of a given k-coloring is ob-
tained by moving a conflicting vertex u from its original color class
Vi to another color class Vj ði – jÞ (denoted by ðu; i; jÞ), called ‘‘crit-
ical one-move” neighborhood. Therefore, for a k-coloring S with
cost f ðSÞ, the size of this neighborhood is bounded by Oðf ðSÞ � kÞ.
More details can be found in a similar TS in [14].

In order to evaluate the neighborhood efficiently, we employ an
incremental evaluation technique used in [11]. The main idea
consists of maintaining a special data structure to record the move
values for each neighborhood move. Each time a move is carried
out, only the move values affected by this move are updated
accordingly.

For the tabu list, once move ðu; i; jÞ is performed, vertex u is for-
bidden to move back to color class Vi for the next l iterations. Here,
the tabu tenure l is dynamically determined by l ¼ l � f ðSÞ þ rð10Þ
where rð10Þ takes a random number in f1; . . . ;10g [14]. In our case,
l is set to 1 (while in [14] l ¼ 0:6). The stop condition of our tabu
search is just the maximal number of iterations with which the
best k-coloring has not been improved. We call this number depth
of tabu search, denoted by a.

2.5. Adaptive multi-parent crossover (AMPaX)

In a genetic algorithm, crossover is usually the main operator to
generate new individuals to be added into the population, thus it is
also believed to be the most important factor in a hybrid algorithm.
In the literature, there are two kinds of crossover operators for
graph coloring problem: assignment crossover as in [12] and par-
tition crossover as in [9,14,16,22,34], the latter one sharing ideas
of grouping genetic algorithm [10].

The assignment crossover is believed to be less powerful than
the partition crossover for graph coloring since it cannot transmit
‘‘good properties” of the parent individuals to the offspring. In con-
trast, the general idea of the partition crossover is to consider a
configuration of coloring as a partition of vertices into color classes
and crossover operator is used to transmit color classes from one
generation to another, which is much more meaningful and rele-
vant for the coloring problem.

In this paper, we propose a new adaptive multi-parent cross-
over (AMPaX) operator which can be considered as an extended
version of the GPX crossover presented in [14]. There are two main
differences between AMPaX and GPX. First, AMPaX uses two or
more parents to produce an offspring while GPX are based on ex-
actly two parents. Second, at each step of the crossover operation,
AMPaX adaptively choose a parent and a color class to transmit to
the offspring while these choices are done in a successive way in
GPX.

Another relevant crossover operator in the literature is the
‘‘GHZ recombination operator” proposed in [16]. Both the AMPaX
and GHZ operators utilize multi-sources for creating solutions.
However, one finds several differences between them. Notice first
that in our case, the population is composed of complete k-color-
ing solutions, while in [16] the population contains independent
sets. From this, our AMPaX operator combines, in a particular
way (see Section 2.5.2), several k-coloring solutions chosen from
the population, while the GHZ operator builds an offspring by
considering all the independent sets in the population. In addi-
tion, at each recombination step, the GHZ operator transmits
one independent set to the offspring, while our AMPaX operator
retains a set of vertices, which may or may not be an independent
set.

Finally, let us mention that AMPaX also shares similarities with
the recombination operators described in [22,34] for graph color-
ing and the recombination operator of [38] designed for a satellite
range scheduling problem.

2.5.1. General idea
A legal k-coloring is a collection of k independent sets. With this

point of view, if we could maximize the size of the independent
sets by a crossover operator as far as possible, it will in turn help
to push those left vertices into independent sets. In other words,
the more vertices are transmitted from parent individuals to the
offspring within k steps, the less vertices are left unassigned. In this
way, the obtained offspring individual has more possibility to be-
come a legal coloring. Both GPX and AMPaX crossovers are based
on this idea.

Given two parent k-colorings S1 and S2, the GPX crossover in
[14] builds step by step the k classes V01; . . . ;V0k of the offspring
k-coloring S0. At the first step, the GPX crossover operator builds
the class V01 by choosing the class having the maximum number
of vertices in parent S1. Similarly, the second class V02 of S0 is built
by considering the second parent S2. Then, two parents S1 and S2

are successively considered to build the remaining color classes
V03; . . . ;V0k of S0. Once k color classes are built, each left uncolored
vertex is assigned a random color.

AMPaX uses m ðm P 2Þ parents to generate an offspring. At
each step, AMPaX builds one color class by considering the color
classes of all parents with a global view. With this strategy, AMPaX
has an advantage over the GPX crossover, i.e., to build a color class,
AMPaX has more choices, thus giving more chance of finding larger
color classes in the parent individuals. Consequently, it could
transmit more vertices from parents to offspring within k steps.

2.5.2. The adaptive multi-parent crossover procedure
The AMPaX operator builds one by one the color classes of the

offspring. After one color class has been built, all the vertices in this
color class are removed from all parents. This process is repeated
until all k color classes are built. At the end of these k steps, some
vertices may remain unassigned. These vertices are handled in the
same way as in the GPX crossover: they are randomly assigned to a
color class.

Given m chosen parents fS1; . . . ; Smg ðm P 2Þ, each k-coloring Si

can be represented as Si ¼ fVi1; . . . ;Vikg where Vij is the set of ver-
tices with color j. Then we produce an offspring S0 ¼ fV01; . . . ;V0kg
using these m parents individuals as follows.

We attempt to build each color class with a global view, i.e.,
each time we choose the color class with the maximal cardinality
in all m parent individuals. It is aimed to transmit as more vertices
as possible at each step such that the number of unassigned verti-
ces after k transmitting steps is as small as possible. After one color
class of S0 is built, all vertices in this color class are removed from
all the m parent individuals.

Furthermore, in order to diversify the offspring individual and
avoid focusing on a single parent, at each step we forbid the cur-
rent parent to be reconsidered within a few number of steps, de-
noted by q. In this paper, we set q to be bm=2c. In other words,
we build the ith color class V0i by choosing the color class with
the maximal cardinality among the parent individuals which are
not used in building the previous q color classes V0i�1; . . . ;V0i�q.
In principle, this idea is similar to the spirit of tabu search. Our
adaptive multi-parent crossover is presented in Algorithm 2.

244 Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250
Algorithm 2. Pseudo-code of the Adaptive Multi-Parent
Crossover Operator
1:
 Input: m parent individuals fS1; . . . ; Smg ðm P 2Þ

2:
 Output: An offspring individual

S0 ¼ fV01; . . . ;V0kg

3:
 Set forbidden length for each parent:

qðSiÞ ¼ 0; i ¼ 1; . . . ;m

4:
 for i ¼ 1; . . . ; k do

5:
 Build the ith color class V0i of S0 as follows:

6:
 Indicate the non-forbidden color classes:bV ¼ fVuv j; qðSuÞ ¼ 0g

7:
 Find out the maximal cardinality class:

Vu�v� ¼ arg maxfjVuvk;Vuv 2 bVg

8:
 Let V0i be the set of vertices in Su� with color

v� : V0i ¼ Vu�v�
9:
 Remove all the vertices in V0i from m parent
individuals:
Vuv ¼ Vuv n V0i; u ¼ 1; . . . ;m; v ¼ 1; . . . ; k
10:
 Update forbidden length:
qðSuÞ ¼ qðSuÞ � 1 ðqðSuÞ > 0Þ and qðSu� Þ ¼ bm=2c
11:
 end for
12:
 Randomly choose a color class for each
unassigned vertex.
Now we consider the time complexity of the AMPaX crossover
operator. It mainly consists of three phases: finding out the maxi-
mal cardinality color class (line 7), removing vertices from all m
parents (line 9) and updating forbidden length (line 10). For the
phase of finding out the maximal cardinality color class (line 7),
its time complexity is Oðm2 � k2Þ since it repeats k times and each
time it has at most m

2 � k operations. For the removing vertices
phase (line 9), its time complexity is Oðm� nÞ since at most n ver-
tices are removed and each vertex is removed from m parents. For
the forbidden length updating phase (line 10), it is obvious that its
time complexity is Oðm� kÞ. Therefore, the total time complexity
of the AMPaX crossover is Oðm� ðk2 þ nÞÞ. Given that m is a param-
eter and the time complexity of the GPX crossover in [14] is
Oðk2 þ nÞ, we can conclude that the time complexity of our AMPaX
crossover is just a constant times of the GPX crossover.

Fig. 1 illustrates how our AMPaX crossover works. In this
example, there are four parent individuals S1; . . . ; S4 with k ¼ 3
colors and nine vertices u1 . . . ;u9. The number of forbidden steps
Fig. 1. Adaptive multi-paren
q for each parent is indicated below. At the first step, color
class V22 ¼ fu2;u4;u8;u9g is chosen to become the first class
V01 of the offspring since it has the maximal cardinality. Then,
vertices u2;u4;u8;u9 are removed from all parents. Similarly, V02

and V03 can be built by choosing color class V41 and V32

respectively, as shown in the illustration. After three steps, there
is no vertex left unassigned. Thus, a complete k-coloring offspring
is constructed.
2.6. Pool updating

In the literature, various pool updating strategies have been
proposed. In [16], the k independent sets transformed from an off-
spring solution replace k random color classes in the pool. In [29], if
the offspring is similar to one of the parents or to a solution in the
pool, this offspring will not be inserted into the population. In-
stead, a completely new solution is added to avoid premature con-
vergence. According to the definition, two solutions are similar if
they have the same score and the same number of uncolored ver-
tices. In [22,34], the pool updating is conditioned by both the solu-
tion quality and the distance between the offspring and other
solutions in the population. We adopt a pool updating strategy,
simultaneously taking into account the solution quality and the
diversity of solutions.

When an offspring individual S0 is obtained by the AMPaX
crossover, we improve S0 by the tabu search algorithm and then
decide whether the offspring should be inserted into the popula-
tion, replacing the worst parent. For this purpose, we define a dis-
tance-and-quality goodness score to judge whether the offspring S0

should be inserted into the population. The main idea is that if the
quality of S0 is not good enough or if S0 is similar to one of the pop-
ulation individuals, this offspring should not be inserted into the
pool. For two k-colorings, we say that they are similar if one k-col-
oring can be transformed into another using a few number of one-
move (Section 2.4) steps. To make things clear, we give the follow-
ing definitions.

Definition 1 (Distance between two k-colorings). Given two k-
colorings Si ¼ fVi1; . . . ;Vikg and Sj ¼ fVj1; . . . ;Vjkg, the distance
between Si and Sj is defined as the least number of one-move steps
for transforming Si to Sj (or Sj to Si), denoted by dij.

It is easy to observe that we can calculate dij by solving a bipar-
tite matching problem [32]. Assume that shareuv is the number of
vertices shared by the uth color class Viu of Si and the vth color class
t crossover illustration.

Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250 245
Vjv of Sj, then the maximal total number of sharing vertices in the
same class for Si and Sj (denoted by mcij) is defined as a perfect
matching where the sum of the numbers of the shared vertices
in the matching has a maximal value. Therefore, dij is just equal
to n�mcij, where n is the total number of vertices. In this paper,
we use an exact algorithm for solving the matching problem, the
augmenting path algorithm implemented in [36].

Definition 2 (Distance between one k-coloring and a popula-
tion). Given a population P ¼ fS1; . . . ; Spg and the distance dij

between any two k-colorings Si and Sj ði; j ¼ 1; . . . ; p; i – jÞ, the
distance between a k-coloring Si ði ¼ 1; . . . ; pÞ and the population P
is defined as the minimum distance between Si and any other k-
coloring in P, denoted by Di;P:

Di;P ¼ minfdijjSj 2 P; j – ig: ð3Þ

Definition 3 (Goodness score of a k-coloring for a population). Given
a population P ¼ fS1; . . . ; Spg and the distance dij between any two
k-colorings Si and Sj ði; j ¼ 1; . . . ; p; i – jÞ, the goodness score of k-
coloring Si for population P is defined as:

hi;P ¼ f ðSiÞ þ eb=Di;P ; ð4Þ

where f ðSiÞ is the conflict number of Si and b is a parameter. Since
the maximum value of Di;P is n, we set b ¼ kn and k ¼ 0:08 in this
paper.

It is clear that the smaller the goodness score hi;P , the better k-
coloring Si. This choice can be justified as follows. On the one hand,
at the beginning of the search, the quality of the solutions in the
population is relatively poor (i.e., f ðSiÞ is large) and the solutions
are also very diversified (i.e., Di;P is large). Therefore, we want the
solution quality to be the dominant part of this function. One easily
observes that in this case the second part of the goodness score be-
comes trivial such that the quality f ðSiÞ dominates this scoring
function.

On the other hand, as the algorithm progresses, both f ðSiÞ and
Di;P values in the current population become smaller and smaller.
In this situation, since all the solutions in the population have
quite good quality, we have to enlarge the importance of the
diversity of the solutions to avoid a premature convergence of
the population. If a solution Si is too close to at least one of the
solutions in the population (i.e., Di;P is small), the second part of
the function in Eq. (4) should become large enough such that
the goodness score of this k-coloring turns to be quite bad, thus
being likely to be discarded. We observe that the function in
Eq. (4) fulfills these requirements.

At this stage, let us notice that other goodness score functions
are possible. For instance, the following one has also been experi-
mented: hi;P ¼ f ðSiÞ þ b=Di;P . In practice, we observe that this non-
exponential function leads to slightly worse results in terms of
quality of the solutions than the one in Eq. (4) because of the above
analyzed reasons.

Given an offspring S0 optimized by tabu search and a population
P ¼ fS1; . . . ; Spg, we use the following rule to decide whether S0

should be inserted into the population. First of all, S0 is temporarily
inserted into the population P, i.e., P0 ¼ P [fS0g. Then, the good-
ness score for each k-coloring Si 2 P0 is calculated according to
Eq. (4) and the worst k-coloring (with the largest value of goodness
score) is identified, denoted by Sw. If Sw is not the offspring k-color-
ing S0, then S0 will be inserted into the population and replace the
worst k-coloring Sw, i.e., P ¼ P [fS0g n fSwg. Otherwise, the second
worst k-coloring Ssw in the population is replaced by S0 with a
probability Pr ¼ 0:2, i.e., P ¼ P [fS0g n fSswg. The Pseudo-code of
our pool updating strategy is presented in Algorithm 3.
Algorithm 3. Pseudo-code of the Pool Updating Rule.
1:
 Input: Population P ¼ fS1; . . . ; Spg and offspring
k-coloring S0
2:
 Output: Updated Population P ¼ fS1; . . . ; Spg

3:
 Tentatively add S0 to Population

P : P0 ¼ P [fS0g

4:
 for i ¼ 0; . . . ; p do

5:
 Calculate the distance between Si and

P0 ðDi;P0 Þ according to Eq. (3)

6:
 Calculate the goodness score of Si ðhi;P0 Þ

according to Eq. (4)

7:
 end for

8:
 Identify the k-coloring with the largest value of

the goodness score:
Sw ¼ arg maxfhi;P0 ji ¼ 0; . . . ; pg
9:
 if Sw–S0 then

10:
 Replace Sw with S0 : P ¼ P [fS0g n fSwg

11:
 else

12:
 if randð0;1Þ < 0:2 then

13:
 Identify the second worst k-coloring:

Ssw ¼ arg maxfhi;P0 ji ¼ 0; . . . ; p; Si–Swg

14:
 Replace the second worst k-coloring Ssw

with S0 : P ¼ P [fS0g n fSswg

15:
 end if

16:
 end if
Our pool updating strategy mainly consists of three phases: cal-
culate Di;P0 for each solution Si (line 5); identify the worst k-coloring
(line 8) and update the pool (lines 9–15). One easily observes that
both the second and the last phases can be fulfilled within OðpÞ
time. For the first phase, in practice we use a p� p matrix to record
all the one-to-one distances between any two solutions during the
initialization of the population, together with the smallest distance
to other solutions (Di;P) for each Si. Therefore, we need only to cal-
culate the distance between the newly generated offspring S0 and
other solutions in the population. This can be achieved in Oðpk3Þ,
since the time complexity of the augmenting path algorithm for
calculating the distance between two solutions is Oðk3Þ where k
is the number of used colors and we repeat this process for p times.
The process for updating all Di;P0 requires OðpÞ. Therefore, the time
complexity of our pool updating is Oðpk3Þ. Given the fact that both
p and k are small numbers which will not increase with the size of
the graph (p is equal to 20 and the maximum value of k is 280 in
our experiments), we can say that the time complexity of our pool
updating is relatively low.

3. Experimental results

In this section, we report intensive experimental results of our
MACOL algorithm on the well-known DIMACS coloring bench-
marks. We compare the results with 11 other state-of-the-art col-
oring algorithms from the literature.

3.1. Problem instances and experimental protocol

The DIMACS graphs constitute the recognized standard
benchmarks in the literature for evaluating the performance of
graph coloring algorithms [26]. Particularly, this set of instances
include 12 random graphs (DSJC125.x, DSJC250.x, DSJC500.x and
DSJC1000.x, x = 1, 5 and 9), six flat graphs (flat300_x_0, x = 20, 26
and 28; flat1000_x_0, x = 50, 60 and 76), eight Leighton graphs
(le450_15x, le450_25x, x = a, b, c and d), 12 random geometric

Table 1
Settings of important parameters.

Parameters Section Description Values

p 2.1 Size of population 20
a 2.4 Depth of TS 100,000
m 2.5 Number of parents for crossover r½2; . . . ;6�
Pr 2.6 Probability for accepting worse offspring 0.2
k 2.6 Parameter for goodness score function 0.08

246 Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250
graphs (R125.x, R250.x, DSJR500.x and R1000.x, x = 1, 1c and 5), two
huge random graphs (C2000.5 and C4000.5), two class scheduling
graphs (school1 and school1.nsh) and one latin square graph
(latin_square_10).

These instances can be classified into two categories1: Easy
graphs and difficult graphs. Those instances that can be solved very
easily by most modern coloring heuristics are called easy graphs,
while for difficult graphs not every algorithm can reach their chro-
matic number or the best known results. In this section, we only re-
port our computational results on the set of difficult graphs and the
results on the easy instances are given in the Appendix.

Our MACOL algorithm is programmed in C and compiled using
GNU GCC on a PC with 3.4 GHz CPU and 2G RAM. To obtain our
computational results, each instance is solved 20 times indepen-
dently with different random seeds (few huge instances are solved
five times). Each run is stopped when the processing time reaches
its timeout limit or a legal k-coloring is found. The timeout limit is
set to be five CPU hours except for two large graphs C2000.5 and
C4000.5, for which a time limit of 120 hours is allowed. All the
computational results were obtained without special tuning of
the parameters, i.e., all the parameters used in our algorithm are
fixed (constant) during the problem solving for all the instances
considered here. Table 1 gives the descriptions and settings of
the important parameters used in our MACOL algorithm, in which
r½2; . . . ;6� denotes a random number from 2 to 6. Notice that fine-
tuning these parameters might lead to improved results.

3.2. Computational results

Our experiment aims to evaluate the MACOL algorithm on the
difficult DIMACS challenge instances, by comparing its performance
with the best known results in the literature. Table 2 summarizes
the computational statistics of our MACOL algorithm. Columns 2–4
give the features of the tested instances: the number of vertices ðnÞ,
the number of edges ðneÞ and the density of the graph ðdensÞ. Col-
umns 5 and 6 present the best known results k� reported in the lit-
erature and the corresponding references. In columns 7–9, the
computational statistics of our MACOL algorithm are given, includ-
ing the number of colors obtained ðkÞ,2 the success rate (#hit) and
the average number of iterations for reaching the given k (iter). If
there exist multiple hits on the k-coloring with k, the values iter
listed in Table 2 are the average over these multiple hits. Addition-
ally, for indicative purpose, last column shows the average computa-
tion time in minutes for reaching the given k. Finally, for six very
difficult graphs, Table 2 shows two or more k values which are gen-
erally close to our best k.

When comparing with the best known results reported in the
literature (column 5 in Table 2), one observes that the results ob-
tained by our MACOL algorithm are quite competitive with respect
to these previous best results.
1 The classification is from: http://www.info.univ-angers.fr/pub/porumbel/graphs/
index.html.

2 Our best results are available at: http://www.info.univ-angers.fr/pub/hao/
BestColoring.html.
For the six random graphs (DSJC) and the four Leighton graphs
(le450), MACOL reaches the previous best known results easily. In
particular, for the graph DSJC1000.9 we get a 223-coloring which
was only reported very recently in [35].

For the six geometric random graphs (R and DSJR), we obtain
the previous best known results except for graph R1000.5. The re-
sult for R1000.5 is far behind the best known result. This instance is
also the only one for which we obtain worse results than several
algorithms. The anti-performance remains to be analyzed.

For the two large random graphs C2000.5 and C4000.5, the pre-
vious best known results are k� ¼ 153 and k� ¼ 280 respectively
which were obtained by extracting several large stable sets and
then solving the residual graph [12]. Without this technique, the
results of [12] are even worse. For the graph C2000.5, a 151-color-
ing is recently obtained by [34]. It is noteworthy to notice that MA-
COL significantly improves these previous results and obtains a
148- and 272-coloring respectively.

For the five flat graphs (flat), except the graph flat300_28_0 we
can obtain the previous best known results very easily. In the liter-
ature, there are only two algorithms that can reach 28-colorings for
this instance. For the last graph latin_square_10, we got a 99-color-
ing which require one more color than the previous best known
coloring. Note that only one algorithm can get 98-coloring [30].

To summarize, for three large instances DSJC1000.9, C2000.5 and
C4000.5, our MACOL algorithm improves the previous best known
results with colorings using respectively 1, 3 and 8 less colors.
However, we have achieved worse results than the previous best
known results for three instances (R1000.5, flat300_28_0 and la-
tin_square_10), for which only few algorithms can reach that re-
sults. For all the remaining 18 instances, our MACOL algorithm
has no difficulty to obtain the best known results. To the best of
our knowledge, our MACOL algorithm is the only algorithm that
reaches such a performance, as shown in Section 3.3.

Table 2 shows the average iteration number for reaching the gi-
ven number of colors k (column 9). Note that this indicator is ma-
chine independent and can be directly compared with other
algorithms. Now we turn our attention to the CPU time. For the
majority of the tested graphs, the CPU time for reaching the small-
est k-coloring is within 2.5 hours (150 minutes) although a maxi-
mum of 5 CPU hours is allocated for each instance. However, for
few very hard graphs, the computation time is very long, i.e., sev-
eral hours to several days. In order to accept more comparisons
with other algorithms under the same stop condition, we also re-
port in Table 2 the results on larger k ðkþ i; i P 1Þ. However, for
the two largest graphs C2000.5 and C4000.5, our MACOL algorithm
need much longer CPU time than for other instances to get a legal
k-coloring, since the search space of these two instances are extre-
mely huge.

3.3. Comparison with other algorithms

Table 2 assesses the performance of MACOL with respect to the
best known results. In this section, we compare the results of our
MACOL algorithm with the most effective heuristic algorithms in
the literature. Table 3 gives the computational comparison of our
MACOL algorithm with 11 state-of-the-art algorithms, which cover
the best known results for all the tested instances. Columns 2 and 3
recall the previous best known k� and the best results found by
MACOL ðkbestÞ. Columns 4–14 present the best results obtained by
these reference algorithms in the literature, including four local
search algorithms [2,6,9,24] and seven hybrid algorithms [12–
14,16,29,30,34]. Notice that five of them [2,16,24,29,34] were pub-
lished very recently in 2008 and 2009.

Furthermore, the last four rows show the summary of the com-
parison between our MACOL algorithm and these reference algo-
rithms. The rows better, equal, worse respectively denotes the

http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html
http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html
http://www.info.univ-angers.fr/pub/hao/BestColoring.html
http://www.info.univ-angers.fr/pub/hao/BestColoring.html

Table 2
Computational results of MACOL algorithm on the difficult DIMACS challenge benchmarks within 5 CPU hours, except for graphs C2000.5 and C4000.5.

Instances n ne dens k� References MACOL

k #hit iter timeðmÞ

DSJC250.5 250 15,668 0.50 28 [14,16,24,29,30,34] 28 20/20 2:6� 106 < 1

DSJC500.1 500 12,458 0.10 12 [2,16,24,29,30,34] 12 20/20 5:3� 107 < 1

DSJC500.5 500 62,624 0.50 48 [2,14,16,24,29,34] 48 20/20 2:1� 106 22

DSJC500.9 500 112,437 0.90 126 [2,16,24,30,34] 126 20/20 1:9� 108 95

DSJC1000.1 1000 49,629 0.10 20 [2,14,16,24,29,34] 20 16/20 3:5� 107 108

DSJC1000.5 1000 249,826 0.50 83 [14,29,34] 83 20/20 2:2� 108 47

DSJC1000.9 1000 449,449 0.90 224a [14,16,24,34] 223 18/20 4:5� 108 150

224 20/20 7:9� 107 45

DSJR500.1c 500 121,275 0.97 85 [12,24,29,30] 85 20/20 4:5� 106 5

DSJR500.5 500 58,862 0.47 122 [29,33] 122 11/20 2:5� 107 115

R250.5 250 14,849 0.48 65 [2,29,30] 65 20/20 2:7� 105 4

R1000.1c 1000 485,090 0.97 98 [2,29,30,34] 98 20/20 7:5� 105 8

R1000.5 1000 238,267 0.48 234 [29,33] 245 13/20 1:2� 109 276

246 16/20 5:8� 108 152

247 20/20 2:3� 108 76

le450_15c 450 16,680 0.17 15 [2,12,16,24,29,30] 15 20/20 2:0� 106 3

le450_15d 450 16,750 0.17 15 [2,12,16,24,29,30] 15 20/20 1:8� 106 5

le450_25c 450 17,343 0.17 25 [2,29,30,34] 25 20/20 1:3� 107 15

le450_25d 450 17,425 0.17 25 [2,29,30,34] 25 20/20 2:1� 107 10

flat300_26_0 300 21,633 0.48 26 [12,29,30] 26 20/20 2:6� 106 4

flat300_28_0 300 21,695 0.48 28 [2,24] 29 15/20 1:7� 107 128

30 20/20 4:6� 106 13

flat1000_50_0 1000 245,000 0.49 50 [2,16,24,29,30] 50 20/20 3:2� 105 5

flat1000_60_0 1000 245,830 0.49 60 [2,16,24,29,30] 60 20/20 6:3� 105 9

flat1000_76_0 1000 246,708 0.49 82 [29,34] 82 20/20 7:2� 107 68

83 20/20 2:7� 107 27

C2000.5 2000 999,836 0.50 151 [34] 148 1/5 8:2� 108 2156

149 3/5 6:6� 108 1875

150 5/5 3:9� 108 1385

151 5/5 3:2� 108 867

C4000.5 4000 4,000,268 0.50 280 [12] 272 3/5 1:2� 109 7165

273 4/5 9:3� 108 5274

274 4/5 6:5� 108 3786

275 5/5 4:8� 108 2943

280 5/5 2:3� 108 1546

latin_sqr_10 900 307,350 0.76 98 [30] 99 5/20 6:7� 107 158

100 17/20 1:3� 107 35

a Very recently a 223-coloring was independently reported in [35] for graph DSJC1000.9.

Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250 247
number of instances for which our MACOL algorithm gets better,
equal and worse results than the corresponding reference algo-
rithm. The row total indicates the total number of instances for
which the reference algorithm has reported the results. For exam-
ple, 16 graphs are used in [24] and we get respectively better, equal
and worse results than those in [24] for 4, 11 and 1 of them.

If we compare the results of our MACOL algorithm with the four
local search algorithms, one easily observes that MACOL dominates
these local search algorithms (see last four rows of Table 3). For
each of these four algorithms, our MACOL algorithm obtains worse
results for at most one instance while better results for at least four
instances.

When comparing with the results of the seven hybrid algo-
rithms, one observes that our MACOL algorithm is also very com-
petitive. Only two algorithms [13,30] get better results than
MACOL for more than one (actually two) instance. At the same
time, our MACOL algorithm reaches better results than the algo-
rithms in [13,30] for respectively 11 and 6 instances. Moreover,
other five algorithms can only obtain better results than MACOL
for at most one instance, while our MACOL gets better results than
these algorithms for at least four instances.
4. Analysis of the AMPaX crossover and pool updating strategy

We turn now our attention to analyze the two most important
features of the proposed MACOL algorithm, i.e., the adaptive multi-
parent crossover operator and the goodness score function for pool
updating.

4.1. Multi-parent crossover versus 2-parent crossover

As indicated in Section 2.5, the AMPaX crossover operator is an
extended version of the previous 2-parent GPX crossover in [14]. In
order to be sure this extension is meaningful, we carried out addi-
tional experiments to compare the performance of the AMPaX
crossover operator with different number of parents.

Keeping other ingredients unchanged in our MACOL algorithm,
we tested the performance of different m-parent crossover opera-
tors (with m ¼ 2; m ¼ 4 and m ¼ r½2; . . . ;6� respectively). Notice
that m ¼ 2 corresponds to the initial GPX operator of [14]. We ob-
serve the average number of iterations for reaching different k with
different m. For the purpose of illustration, we choose the large in-
stance DSJC1000.5 as our test bed.

Table 3
Comparison with the state-of-the-art algorithms in terms of the best results obtaineda.

Instances k� kbest Local Search Algorithms Hybrid Algorithms

[24] [8] [6] [2] [12] [30] [14] [16] [29] [13] [34]

DSJC250.5 28 28 – 28 28 – 29 28 28 28 28 28 28
DSJC500.1 12 12 12 13 12 12 – – – 12 12 12 12
DSJC500.5 48 48 48 50 49 48 49 49 48 48 48 49 48
DSJC500.9 126 126 126 127 126 127 – – – 126 127 127 126
DSJC1000.1 20 20 20 21 – 20 – – 20 20 20 21 20
DSJC1000.5 83 83 86 90 89 89 84 89 83 84 83 88 83
DSJC1000.9 224 223 224 226 – 226 – – 224 224 224 228 224
DSJR500.1c 85 85 85 – – 85 85 85 – 86 85 85 –
DSJR500.5 122 122 125 – 124 125 130 123 – 127 122 122 124
R250.5 65 65 – 66 – 66 69 65 – – 65 65 –
R1000.1c 98 98 – 98 – 98 99 98 – – 98 98 98
R1000.5 234 245 – 242 – 248 268 241 – – 234 237 245
le450_15c 15 15 15 – 15 15 16 15 15 15 15 15 –
le450_15d 15 15 15 – 15 15 16 15 – 15 15 15 –
le450_25c 25 25 25 – 26 25 – – 26 26 25 26 25
le450_25d 25 25 25 – 26 25 – – – 26 25 26 25
flat300_26_0 26 26 – 26 26 – 26 26 – 26 26 26 –
flat300_28_0 28 29 28 31 31 28 33 31 31 31 31 31 31
flat300_50_0 50 50 50 50 – 50 84 50 – 50 50 50 –
flat300_60_0 60 60 60 60 – 60 84 60 – 60 60 60 –
flat300_76_0 82 82 85 89 – 87 84 89 83 84 82 87 82
C2000.5 153 148 – – – – 153 165 – – – 162 151
C4000.5 280 272 – – – – 280 – – – – 301 –
latin_sqr_10 98 99 – – 99 – 106 98 – 104 101 99 –

Better 3 – 4 9 6 7 16 6 4 9 4 11 4
Equal 18 – 11 5 7 11 2 9 5 10 17 11 11
Worse 3 – 1 1 0 1 0 2 0 0 1 2 0

Total 24 24 16 15 13 19 18 17 9 19 22 24 15

a Notice that competitive results were also reported with a refined tabu search algorithm described in a new paper recently accepted for publication [35].

Table 4
Computational results of MACOL algorithm on the easy DIMACS benchmarks.

Instances n ne dens k� MACOL

k #hit iter timeðmÞ

248 Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250
Fig. 2 shows the average number of iterations for k ¼ 85; . . . ;90.
For each pair (k and m), the problem is solved 10 times. From Fig. 2,
one easily observes that the average number of iterations for mul-
ti-parent crossover (m ¼ 4 and m ¼ r½2; . . . ;6�) is much smaller
than that for 2-parent crossover ðm ¼ 2Þ for different k. We per-
formed a 95% confidence t-test to assess this difference and found
that it is statistically significant for all k < 89. These results high-
light thus the importance of the multi-parent crossover strategy.

When one compares the fixed multi-parent crossover ðm ¼ 4Þ
and the random multi-parent crossover ðm ¼ r½2; . . . ;6�Þ, one finds
that when k is large ðk P 87Þ (i.e. when the problem is not too
hard) both strategies performs similarly. However, when k is small
ðk < 87Þ (i.e., when the problem is harder) the random strategy
performs always better than the fixed strategy. This can be ex-
plained by the fact that the random strategy provides the search
Fig. 2. Comparison between multi-parent crossover and 2-parent crossover.
with more diversifications than the fixed strategy and thus helps
to find the feasible colorings more easily, especially when the
problem becomes difficult (k is small). Let us mention that the
same experiments have also been carried out on several other in-
stances shown in Tables 2 and 4, leading to similar observation.

4.2. Goodness score function for pool updating

In order to evaluate the distance-and-quality based goodness
score function (denoted by DisQual) for pool updating, we compare
DSJC125.1 125 736 0.09 5 5 10/10 1:4� 105 1

DSJC125.5 125 3891 0.50 17 17 10/10 4:8� 104 3

DSJC125.9 125 6961 0.89 44 44 10/10 2:4� 106 4

DSJC250.1 250 3218 0.10 8 8 10/10 6:9� 105 2

DSJC250.9 250 27,897 0.90 72 72 10/10 5:5� 106 3

R125.1 125 209 0.03 5 5 10/10 3:7� 105 2

R125.1c 125 7501 0.97 46 46 10/10 2:8� 106 5

R125.5 125 3838 0.50 36 36 10/10 3:2� 104 1

R250.1 250 867 0.03 8 8 10/10 1:5� 106 5

R250.1c 250 30,227 0.97 64 64 10/10 2:8� 106 4

DSJR500.1 500 3555 0.03 12 12 10/10 3:3� 105 4

R1000.1 1000 14,348 0.03 20 20 10/10 2:9� 105 2

le450_15a 450 8168 0.08 15 15 10/10 2:7� 105 2

le450_15b 450 8169 0.08 15 15 10/10 3:5� 105 2

le450_25a 450 8260 0.08 25 25 10/10 1:8� 105 4

le450_25b 450 8263 0.08 25 25 10/10 2:8� 106 3

school1 385 19,095 0.26 14 14 10/10 8:8� 105 6

school1_nsh 352 14,612 0.24 14 14 10/10 7:3� 105 4

flat300_20_0 300 21,375 0.48 20 20 10/10 1:7� 106 1

Fig. 3. Comparison between different goodness score functions.

Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250 249
DisQual with previous goodness score functions proposed in the lit-
erature. The traditional goodness score function for pool updating
is only based on the quality f: one is to replace the worst k-coloring
in the population with the new offspring (denoted by PoolWorst),
the other is to replace the worst parent (denoted by ParentWorst).

Once again we kept other ingredients unchanged in our MACOL
algorithm and observe the average number of iterations for reach-
ing a given legal k-coloring with these three different pool updat-
ing strategies. Fig. 3 shows the average number of iterations for
k ¼ 85; . . . ;90 on DSJC1000.5. The experiment is also based on 10
independent runs.

One easily finds that MACOL with our new goodness score func-
tion converges more quickly towards a legal k-coloring than with
the tradition pool updating strategies PoolWorst and ParentWorst,
which implies that considering the diversity of the population as
well as the quality for pool updating is essential for our algorithm.
On the other hand, PoolWost and ParentWost strategies perform
similarly. Once again, this observation was also confirmed with
other graphs of Tables 2 and 4.

5. Conclusion

In this paper, we have presented MACOL, a memetic algorithm
for the graph coloring problem. The proposed algorithm integrates
a number of original features. First, we have proposed an adaptive
multi-parent crossover operator. Second, based on the definition of
the distance between two k-colorings, we introduced the distance
between a k-coloring and a population. Third, we proposed a new
goodness score function considering both solution quality and
diversity of individuals. These strategies provide the algorithm
with a good tradeoff between intensification and diversification.

We have shown that this hybrid heuristic obtains highly com-
petitive results on a large number of DIMACS challenge benchmark
graphs. Compared with a number of reference algorithms, our MA-
COL algorithm is quite effective and has a robust behavior on all
the considered instances.

Additionally, we investigated several essential parts of our pro-
posed algorithm. We first carried out experiments to demonstrate
that the multi-parent crossover is more powerful than the tradi-
tional 2-parent crossover in this context. Moreover, we showed
that the proposed distance-and-quality based goodness score func-
tion for pool updating is quite useful.

The success of the MACOL algorithm on graph coloring problem
reminds us that it is essential to introduce meaningful diversifica-
tion mechanisms and highlight the tradeoff between intensifica-
tion and diversification in designing heuristic search algorithms.
Following this spirit, we hope to design even more robust and
effective heuristic algorithms for solving graph coloring problem
and other optimization problems.

Acknowledgements

We are grateful for comments by the referees that have signif-
icantly improved the paper. This work was partially supported by
‘‘Angers Loire Métropole” and the Region of ‘‘Pays de la Loire” within
the MILES and RADAPOP Projects.

Appendix

In this appendix, we report our computational results on the
easy set of the DIMACS challenge benchmark graphs with the time
limit of 2 CPU hours, as shown in Table 4. The symbols in this table
are the same as those in Table 2.
References

[1] C. Avanthay, A. Hertz, N. Zufferey, A variable neighborhood search for graph
coloring, European Journal of Operational Research 151 (2) (2003) 379–388.

[2] I. Blöchliger, N. Zufferey, A graph coloring heuristic using partial solutions and
a reactive tabu scheme, Computers and Operations Research 35 (3) (2008)
960–975.

[3] D. Brélaz, New methods to color the vertices of a graph, Communications of the
ACM 22 (4) (1979) 251–256.

[4] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper
heuristic for timetabling problems, European Journal of Operational Research
176 (2007) 177–192.

[5] M. Chams, A. Hertz, D. de Werra, Some experiments with simulated annealing
for coloring graphs, European Journal of Operational Research 32 (1987) 260–
266.

[6] M. Chiarandini, T. Stützle, An application of iterated local search to graph
coloring, in: D.S. Johnson, A. Mehrotra, M. Trick (Eds.), Proceedings of the
Computational Symposium on Graph Coloring and its Generalizations, Ithaca,
New York, USA, 2002, pp. 112–125.

[7] D. de Werra, C. Eisenbeis, S. Lelait, B. Marmol, On a graph-theoretical model for
cyclic register allocation, Discrete Applied Mathematics 93 (2–3) (1999) 191–
203.

[8] R. Dorne, J.K. Hao, Tabu search for graph coloring, T-colorings and set T-
colorings, Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization (1998) 77–92.

[9] R. Dorne, J.K. Hao, A new genetic local search algorithm for graph coloring,
Lecture Notes in Computer Science 1498 (1998) 745–754.

[10] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing, Journal of
Heuristics 2 (1) (1996) 5–30.

[11] C. Fleurent, J.A. Ferland, Genetic and hybrid algorithms for graph coloring,
Annals of Operations Research 63 (1996) 437–461.

[12] C. Fleurent, J.A. Ferland, Object-oriented implementation of heuristic search
methods for graph coloring, maximum clique, and satisfiability, in: [26], 1996,
pp. 619–652.

[13] N. Funabiki, T. Higashino, A minimal-state processing search algorithm for
graph coloring problems, IEICE Transaction Fundamentals E83-A (2000) 1420–
1430.

[14] P. Galinier, J.K. Hao, Hybrid evolutionary algorithms for graph coloring, Journal
of Combinatorial Optimization 3 (4) (1999) 379–397.

[15] P. Galinier, A. Hertz, A survey of local search methods for graph coloring,
Computers and Operations Research 33 (9) (2006) 2547–2562.

[16] P. Galinier, A. Hertz, N. Zufferey, An adaptive memory algorithm for the K-
colouring problem, Discrete Applied Mathematics 156 (2) (2008) 267–279.

[17] M. Gamache, A. Hertz, J.O. Ouellet, A graph coloring model for a feasibility
problem in monthly crew scheduling with preferential bidding, Computers
and Operations Research 34 (8) (2007) 2384–2395.

[18] M.R. Garey, D.S. Johnson, H.C. So, An application of graph coloring to printed
circuit testing, IEEE Transactions on Circuits and Systems 23 (1976) 591–599.

[19] M. R Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, San Francisco, 1979.

[20] C. Glass, Bag rationalisation for a food manufacturer, Journal of the Operational
Research Society 53 (2002) 544–551.

[21] F. Glover, M. Parker, J. Ryan, Coloring by tabu branch and bound, In: [26], 1996,
pp. 285–307.

[22] J.P. Hamiez, J.K. Hao, Scatter search for graph coloring, Lecture Notes in
Computer Science 2310 (2002) 168–179.

[23] A. Hertz, D. de Werra, Using tabu search techniques for graph coloring,
Computing 39 (1987) 345–351.

[24] A. Hertz, M. Plumettaz, N. Zufferey, Variable space search for graph coloring,
Discrete Applied Mathematics 156 (13) (2008) 2551–2560.

250 Z. Lü, J.-K. Hao / European Journal of Operational Research 203 (2010) 241–250
[25] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by
simulated annealing: An experimental evaluation; Part II. Graph coloring
and number partitioning, Operations Research 39 (3) (1991) 378–406.

[26] D.S. Johnson, M. Trick, Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, vol. 26, American Mathematical Society, 1996.

[27] M. Laguna, R. Martı́, A GRASP for coloring sparse graphs, Computational
optimization and applications 19 (2) (2001) 165–178.

[28] F.T. Leighton, A graph coloring algorithm for large scheduling problems,
Journal of Research of the National Bureau of Standards 84 (6) (1979) 489–506.

[29] E. Malaguti, M. Monaci, P. Toth, A metaheuristic approach for the vertex
coloring problem, INFORMS Journal on Computing 20 (2) (2008) 302–316.

[30] C. Morgenstern, Distributed coloration neighborhood search, in: [26], 1996, pp.
335–357.

[31] P. Moscato, Memetic algorithms: A short introduction, in: New Ideas in
Optimization, McGraw-Hill Ltd., Maidenhead, UK, 1999, pp. 219–234.

[32] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Inc., 1982.
[33] S. Prestwich, Coloration neighbourhood search with forward checking, Annals
of Mathematics and Artificial Intelligence 34 (4) (2002) 327–340.

[34] D.C. Porumbel, J.K. Hao, P. Kuntz, Diversity control and multi-parent
recombination for evolutionary graph coloring algorithms, in: C. Cotta, P.
Cowling (Eds.), EvoCOP 2009, Lecture Notes in Computer Science, vol. 5482,
Springer-Verlag, 2009, pp. 121–132.

[35] D.C. Porumbel, J.K. Hao, P. Kuntz, A search space ‘‘cartography” for guiding
graph coloring heuristics, Computers and Operations Research, in press,
doi:10.1016/j.cor.2009.06.024.2009.

[36] J.C. Setubal, Sequential and parallel experimental results with bipartite
matching algorithms, Technical Report EC-96-09, Institute of Computing,
University of Campinas, Brasil 1996.

[37] D.H. Smith, S. Hurley, S.U. Thiel, Improving heuristics for the frequency
assignment problem, European Journal of Operational Research 107 (1) (1998)
76–86.

[38] N. Zufferey, P. Amstutz, P. Giaccari, Graph colouring approaches for a
satellite range scheduling problem, Journal of Scheduling 11 (4) (2008) 263–277.

	A memetic algorithm for graph coloring
	Introduction
	Memetic algorithm
	Main scheme
	Search space and evaluation function
	Initial population
	Tabu Search algorithm
	Adaptive multi-parent crossover (AMPaX)
	General idea
	The adaptive multi-parent crossover procedure

	Pool updating

	Experimental results
	Problem instances and experimental protocol
	Computational results
	Comparison with other algorithms

	Analysis of the AMPaX crossover and pool updating strategy
	Multi-parent crossover versus 2-parent crossover
	Goodness score function for pool updating

	Conclusion
	Acknowledgements
	Appendix
	References

